If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+30t+13=0
a = -4.9; b = 30; c = +13;
Δ = b2-4ac
Δ = 302-4·(-4.9)·13
Δ = 1154.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-\sqrt{1154.8}}{2*-4.9}=\frac{-30-\sqrt{1154.8}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+\sqrt{1154.8}}{2*-4.9}=\frac{-30+\sqrt{1154.8}}{-9.8} $
| 7/15+1/10=x | | b-1.3=7b.3 | | 2.h=4.4h= | | 2(2x+6)=-3(4+x) | | 2(x+2)-5=3x+3 | | 0.75x-1=0.25x-1 | | 0.75x-1=0.25x- | | 16x+25=180 | | 0.25(x-6)=21 | | 3x-1+4x+2=180 | | x-10.9=16.8 | | U-4x+6=0 | | 5p-7=125 | | r-31=0.76 | | x+5=5x-23 | | (X+5)(x-7)=x-2x-35 | | -0.5x=-3x+0.25 | | 2m=111=m+2492 | | 1/3(9u-6)=-5 | | 5(-2u+7)=25 | | x=11.4^.75 | | 4.50x+15=5x+12.50 | | x=24^.75 | | 35=6-y | | 6-y=35 | | 6x+9=5x+28 | | 10x+3+3x=5x+1 | | x=15^.75 | | 25x-12+3x+24=180 | | 3n+35=104 | | 25x-12)+(3x+24)=180 | | (13x-5)+(2x-10)=90 |